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Abstract—In this paper, we formulate the problem of pre-
dicting wind generation as one of streaming data analysis. We
want to understand if it is possible to use the weather data
in a time window just before the current time to gain insight
into how the wind generation might behave in a time interval
just after the current time. Specifically, we use a singular value
decomposition of the weather data, and show that the number
of singular values and the largest singular value can be used to
predict the magnitude of the change in the generation in the near
future. The analysis uses an incremental algorithm based on a
sliding window for reduced computational costs.

I. INTRODUCTION

Integrating wind energy on the power grid is an extremely
challenging problem. Wind is an intermittent resource and
is typically scheduled using a forecast. These forecasts are
obtained using numerical weather prediction techniques or de-
rived from historical data. In our previous work, we considered
ways in which we can use data mining techniques to provide
control room operators additional information they can use
while scheduling wind resources. In [1], we identified diurnal
motifs, or recurring patterns, in the data. We found that there
are a limited number of these motifs, and if we know the shape
of the generation during the early hours of the day, we can
predict how the generation is likely to change later in the day.
In other related work [2], we used weather data and feature
selection techniques to identify important variables relevant to
days with ramp events, where the generation changes by a
large amount in a short time. By monitoring just the important
variables, the operators could reduce their data overload. We
also showed that classification techniques could be helpful in
predicting days when ramp events were likely to occur.

In the current work, we take a slightly different approach
to the use of data mining in scheduling wind energy. We view
the problem as one of streaming data analysis and investigate
what we might be able to learn about the wind generation in
the near future based on the weather conditions in the time
window just before the current time. In contrast to our earlier
work, where the temporal resolution used was a day, we expect
that by using a finer temporal resolution of 1-3 hours in our
analysis, we can capture the short term changes in the weather
that might influence the generation in the near future.

This paper is organized as follows: First, in Section II,
we describe the wind energy generation and weather data
from the mid-Columbia Basin that are used in our analysis. In
Section III, we formulate our problem as one of transforming
the large number of weather variables in a time window just
before the current time into a lower dimensional space. We
describe how we can use the characteristics of this lower

dimensional space to understand the behavior of the wind
generation in the time period just after the current time. In
Section IV, we describe an incremental algorithm that updates
the lower dimensional space as new data arrive and the weather
variables corresponding to the oldest time stamp are removed
from the time window. Section V describes the insight we
gain from our analysis, Section VI discusses related work and
Section VII concludes with a summary.

II. DESCRIPTION OF THE DATA

The wind energy generation data used in our work are
obtained from Bonneville Power Administration (BPA) in the
mid-Columbia Basin region. We use the total generation from
all wind farms in the BPA balancing area [3]. The data are
sampled at 5-minute intervals. Figure 1 shows the generation
for the first week in October 2011.

0 500 1000 1500 2000
0

500

1000

1500

2000

2500

3000

3500

Wind energy generation

Time

G
e
n
e
ra

ti
o
n
 (

M
W

)

Fig. 1. The total wind generation for the first week in October 2011.

The weather data used in our analysis are from weather
stations near the BPA balancing area. Some of these stations
have data missing over long time periods. So we chose eight
stations that have complete data. The names of these stations
and the seven variables available at each location are listed in
Table I. Figure 2 shows the variables at Biddle Butte for the
first week in October 2011. Like the wind generation data, the
weather data are also sampled at 5 minute intervals.

Weather Station Measurement

Augspurger (A) barometric pressure

Biddle Butte (B) relative humidity

Hood River (HR) temperature

Mt Hebo (MH) wind direction

Roosevelt (R) wind speed

Sunnyside (SS) peak speed

Tillamook (Ti) peak direction

Troutdale (Tr)

TABLE I. THE EIGHT WEATHER STATIONS NEAR THE BPA
BALANCING AREA. EACH STATION HAS SEVEN WEATHER

MEASUREMENTS, RESULTING IN 56 VARIABLES.



Both the wind energy generation data and the weather data
contain some missing time periods. We use interpolation to
fill in the missing values in short time periods. If the missing
values are in a longer time period, we remove the entire time
segment from our analysis.
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Fig. 2. The seven weather variables - barometric pressure, tem-
perature, wind speed, peak wind speed, wind direction, peak wind
direction, and relative humidity - for the first week in October 2011
at the Biddle Butte station.

III. PROBLEM FORMULATION

The question we want to address is the following: can we
exploit the weather data in a time window of length c just
before the current time t, to gain some insight on the generation
from time period t to t+ l? There are many ways in which we
can address this question depending on what insight we want
to gain about the generation and how we process the data in the
time window. For our dataset, since the number of variables is
large, we consider a lower-dimensional representation of the
data. We expect that this representation will change over time
and investigate if the characteristics of the representation are
correlated with the generation in the time period just after the
current time.

We consider the singular value decomposition (SVD) to
obtain the lower dimensional representation of the data in a
time window. Let the real r× c matrix M denote the weather
data in the time interval before the current time. c is the length
of the time window and r is the number of weather variables.
Then, the SVD decomposition of M can be written as

M = UΣVT (1)

where U is an r × r orthogonal matrix, V is a c × c
orthogonal matrix, and Σ is an r × c diagonal matrix with
entries (σ1, σ2, . . . , σp), where p = min(r, c) and σ1 ≥ σ2 ≥
. . . ≥ σp ≥ 0. The σ are the singular values of M and the
columns of U and V are the left and right singular vectors,
respectively, of M. If we consider only the top largest k
singular values (also called the principal singular values) and
the corresponding column vectors of U and V, which form
the sub-matrices Uk and Vk, respectively, we obtain a reduced
dimensional representation Mk of M as follows:

Mk = UkΣkV
T
k . (2)

In signal processing, this reduced dimensional space is often
called the signal space as k is chosen so that the singular values
that are excluded are small and form the noise in the data.

Let Mold denote the matrix M at the time window that
ends at time t, that is, Mold contains data from time steps
t − c + 1, t − c + 2, . . . , t in order. Suppose we choose to
keep k singular values such that the reduced representation
captures P% of the energy in the data. We expect that both k
and the corresponding singular values in some way represent
the matrix Mold. When new data at time (t + 1) arrive, the
sliding window shifts by one and Mnew now contains data
from time steps t− c + 2, t− c + 3, . . . , t, t + 1 in order.

Our goal is to understand if the changes in the singular
values and vectors of the signal subspace, as the matrix of
observations transitions from Mold to Mnew, can provide
some insight into the wind generation in the time steps just
after the current time.

IV. INCREMENTAL SINGULAR VALUE DECOMPOSITION

A naı̈ve approach to implementing SVD on sliding win-
dows is to recalculate the decomposition whenever new data
are added and the oldest data are removed from the window.
However, the operation count to obtain an SVD of an r × c
matrix is O(rc2), assuming that r ≫ c. Instead, we use an
approximation that keeps just the information in the lower
dimensional signal space, discarding the noise component. As
new data arrive, this information in the signal sub-space is
updated appropriately, along with any changes in the rank of
the signal sub-space.

An elegant formulation of an incremental SVD method,
called the Fast Approximate Subspace Tracking (FAST) algo-
rithm, was proposed by Real, Tufts and Cooley in 1997 [4],
[5]. We briefly summarize their approach below.

At the time instant t, the matrix Mold can be considered
to be the sum of a reduced-rank signal matrix Sold of rank k
and a full-rank noise matrix Nold:

Mold = Sold + Nold



Recall that the rows of Mold represent the weather variables
and the columns represent the time instants in the window.

The matrices Mold and Mnew can be represented in terms
of their column vectors mi as

Mold = [m1 m2 . . . mc]

and

Mnew =
[

m2 m3 . . . m(c+1)

]

where the oldest values are removed from one end of the matrix
and the new ones added at the other end.

Suppose that we have a sufficiently accurate approximation
to the k principal singular values and the corresponding left
singular vectors of Mold. Let these k orthonormal approximate
left singular vectors be represented as the columns of an r×k
matrix Uold as

Uold = [u1 u2 . . . uk]

where ui is associated with the i-th largest approximate
singular value. These column vectors form the basis for the
signal space corresponding to Mold. By definition, the error
in reconstruction resulting from the use of only the largest k
singular values and their corresponding vectors is given by the
squared Frobenius norm of the difference between the original
matrix Mold and its projection onto the reduced dimension
space spanned by the columns of Uold:

ǫold = ‖Mold −UoldU
T
oldMold‖

2
F .

The FAST algorithm updates the approximate singular
value decomposition in two steps. First, it creates a low-rank
approximation A, of r rows and c columns, to Mnew such
that

‖Mnew −A‖2F ≤ ǫold.

Thus, if the error ǫold was acceptable in the prior step,
the error in the new approximation will be no greater, and
therefore, should be acceptable as well. The second step uses
the information in the matrix A to construct a smaller matrix
F, which is then used to obtain the approximate singular values
and vectors of Mnew.

Let the approximation to Mold be written as:

Mold ≈ UoldU
T
oldMold

= Uold [a1 a2 . . . ac]

= [g1 g2 . . . gc]

where aj = UT
oldmj is a k× 1 column vector, mj is the j-th

column of Mold, and gj is the j-th column of UoldU
T
oldMold.

Since Mnew differs from Mold in two columns, we can exploit
the existing decomposition of the approximation to Mold to
create the matrix A, which is the rank (k + 1) approximation
to Mnew, as follows:

A = [Uold q]

[

a2 a3 . . . ac a(c+1)

0 0 . . . 0 b

]

(3)

= [Uold q]E.

The first matrix on the right hand side is an r×(k+1) matrix,
while the second matrix, E, is a (k +1)× c matrix. The r× 1
column vector q and the scalar b are obtained by decomposing

the new column m(c+1) into two components - one (that is,
Uolda(c+1)), which is in the column space of Uold and one
(that is, bq), which is in the space orthogonal to Uold:

a(c+1) = UT
oldm(c+1)

z = m(c+1) −Uolda(c+1)

b = ‖z‖

q =
z

b

By expanding the right hand side of Equation( 3) we obtain

A =
[

g2 g3 . . . gc m(c+1)

]

.

The resulting error in approximating Mnew by A is given by:

‖Mnew −A‖2F =
c

∑

i=2

{

‖mi − gi‖
2

}

+ ‖m(c+1) −m(c+1)‖
2

with the second term on the right hand side being zero. This
is smaller than the error at the prior step:

ǫold = ‖Mold −UoldU
T
oldMold‖

2
F

=

c
∑

i=1

‖mi − gi‖
2,

making A an acceptable rank (k+1) approximation to Mnew.

However, A is the same size as Mnew. To reduce the
amount of computations required to update Uold, we want to
work with a matrix of a smaller size than Mnew. We observe
that the first matrix on the right hand side of Equation (3) has,
by definition, (k+1) orthonormal columns. So, if we construct
the singular value decomposition of the second matrix, E, of
size (k + 1)× c, as follows:

E = UEΣEVT
E ,

we can generate the singular value decomposition of A as:

A =

(

[Uold q]UE

)

ΣEVT
E

= UAΣAVT
A

where

UA = [Uold q]UE (4)

ΣA = ΣE

VA = VE .

This allows us to obtain the (k + 1) principal left singular
vectors of A as the columns of the r × (k + 1) matrix UA

by calculating the singular value decomposition of the smaller
matrix E. Since A is an approximation to Mnew, this gives
us the approximation to the left singular values of Mnew. The
approximation to the singular values of Mnew are obtained by
considering the (k +1) elements on the main diagonal of ΣE .

It is possible to reduce the computations even further by
considering the matrix F defined as:

F = EET (5)

=
(

UEΣEVT
E

)(

VEΣEUT
E

)

= UEΣEΣEUT
E (6)

= UF ΣF VT
F .



The matrix F is a smaller (k + 1) × (k + 1) matrix and its
singular value decomposition can be obtained more easily than
that of E, which is a (k + 1)× c matrix.

We can now obtain the singular values and vectors of A
as follows. The singular vectors of F are the columns of
UF . Since these are also the columns of UE , we can use
Equation(4) to calculate the left singular vectors of A. In
addition, from Equation( 6), if follows that the singular values
of A are the square-root of the singular values of F.

In summary, the FAST algorithm creates an approximation
to the SVD of Mnew by calculating the singular values and
vectors of F and combining them with Uold from the previous
step and the vector q, which is obtained using Uold and the
vector m(c+1) representing the new values in Mnew. The steps
in the FAST method are summarized in Algorithm 1 [6].

Algorithm 1 FAST algorithm.

Obtain initial estimate of k principal singular values and left
singular vectors Uold of the initial matrix M
while new data arrive do

Obtain new data vector m(c+1)

ai = UT
oldmi, i = 2, 3, . . . , (c + 1)

z = m(c+1) −Uolda(c+1)

b = ‖z‖
q = z/b

E =

[

a2 a3 . . . ac a(c+1)

0 0 . . . 0 b

]

F = EET

Compute SVD: F = UF ΣF VT
F

Replace columns of Uold with columns of [Uold q]UF

Replace old singular values with square root of singular
values of ΣF

Update data vectors: mi ←m(i+1), i = 1, 2, . . . , c
end while

The FAST algorithm can also be used to detect any changes
in the dimension of the signal subspace as the matrix of
observations changes from Mold to Mnew ([5] Section VIII).
This dimension is obtained by considering the top k singular
values and vectors such that a reconstruction using them
explains P% of the energy in the data, which is the sum of the
squares of the singular values of the matrix or the the square of
the Frobenius norm of the matrix. Given the Frobenius norm
of Mold, the norm of Mnew is obtained as:

‖Mnew‖
2
F = ‖Mold‖

2
F − ‖m1‖

2
2 + ‖m(c+1)‖

2
2

Suppose Mold was represented using k approximate sin-
gular values and vectors. If the energy calculation for Mnew

indicates that the signal subspace dimension has increased, we
keep all the (k + 1) approximate singular values and vectors
calculated using Algorithm 1. However, if the signal subspace
dimension has reduced or remained at k, the corresponding
number of approximate singular values and vectors can be
retained at the end of the processing of Mnew.

The FAST algorithm stores the data for the previous
decomposition and thus requires a memory of at least rc to
store Uold, where r is the dimension of the original data. Its
computational cost is O(rk2) [5].

V. EXPERIMENTAL RESULTS

In our analysis using data from the mid-Columbia Basin
region, we consider three window sizes - c = 12, 24, and 36
- representing 60, 120 and 180 minutes (1, 2 and 3 hours),
respectively. We expect that a very small window size is
unlikely to provide enough information on the generation in
the future, and too large a window size would result in poor
accuracy of prediction as it would capture outdated weather
information. We also set P , the percentage of energy in the
data to be retained as 99%. In the current analysis, we focus on
the number of singular values, denoted by k, that capture P%
of the energy, as well as the largest singular value, denoted
by s, as these appeared to be most relevant to predicting the
generation in the time period just after the end of the window.
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Fig. 3. The number of singular values (left) and the largest singular
values (right) obtained from incremental SVD using a three-hour
window (c = 36) for the first week in October 2011.

Figure 3 shows how s and k vary with time for the first
week in October 2011, along with the wind generation. These
results are obtained by applying the FAST algorithm to weather
data using a three-hour (c = 36) sliding window. The wind
generation, s, and k for the entire month of October 2011 have
each been scaled to lie between [0,1], with the figure showing
just the first week. The ranges of s, k, and generation for the
month are [3033,8625], [1,13], and [0, 3220] MW, respectively.

We observe that there is an inverse relationship between
k and the wind generation. When the generation is high, the
number of singular values necessary to represent 99% of the
energy in the data is small, and vice-versa. In contrast, the
largest singular value, s, follows the generation and tends to
be high when the generation is high. This indicates that s and
k are likely to be predictive of the wind generation.

To explore this idea further, we consider how the distribu-
tion of s and k, obtained for each time point, t, in October
2011, using the weather data in the time window [t− c+1, t],
relates to the magnitude of the change in the generation, |∆W |,
during the time period [t, t+ l]. In other words, do s and k for
the time period just before t, reflect the change in generation
in the time period just after t? Our results are presented in
Figure 4, where we plot the largest singular values, s, on the
x-axis and the number of top singular values, k, on the y-axis.
Each point represents a time instant t, with the points separated
based on whether |∆W | is high (> 100W) or low (≤ 100W).
We show two values of l: 10 mins and 30 mins. The colors
indicate increase and decrease in generation.

It is clear from Figure 4 that |∆W | is high only when
the largest singular values are > 5000 and the number of top
singular values are < 8. Or, |∆W | is likely to be low if the
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Fig. 4. The largest singular values, s, on the x-axis, and the numbers
of top singular values, k, on the y-axis, obtained using a three-hour
window (c = 36) for October 2011. (a) and (c) show time points for
which the generation change |∆W | > 100 MW, while (b) and (d)
show time points for which |∆W | ≤ 100 MW. The time interval l

for the generation change is 10 mins for (a) and (b) and 30 mins for
(c) and (d). The colors indicate increase and decrease in generation.

values of k and s are not in the lower right corner of the plot.
For a larger l, the range of s and k for high |∆W | is larger.

This observation allows us to create a simple decision
boundary based on the values of s and k. Since we care more
about larger changes in generation, we compute the sensitiv-
ity as the proportion of correctly predicted high generation
changes and the specificity as the proportion of correctly pre-
dicted low generation changes. The overall accuracy considers
the proportion of all correctly predicted time points.

To determine the decision boundary for high |∆W |, we
consider the distribution of s and k for |∆W | > 100 and
l = 1, and choose the thresholds such that all points are within
the decision boundary, that is, the specificity is 100%. We
found that the values of s and k that determine the decision
boundary change slightly with the length of the sliding window
c = 12, 24, and 36 as shown in Table II.

Window length c Ranges with high |∆W |
12 s > 3000 and k < 7
24 s > 3000 and k < 9
36 s > 5000 and k < 8

TABLE II. THRESHOLDS USED FOR GROUPING THE HIGH

GENERATION CHANGES, |∆W | > 100 MW, FOR c = 12, 24 AND

36 FOR OCTOBER 2011 DATA.

Figure 5(a) and (b) shows the sensitivity and specificity,
respectively, in prediction of |∆W | for October 2011 for the
three time windows and different values of l = 1, 2, 3, . . .,
corresponding to 5, 10, 15, . . . minutes after the current time.
We observe that all time windows used in incremental SVD
behave similarly using the thresholds in Table II. Consider the
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Fig. 5. (a) Sensitivity and (b) specificity in |∆W | after 5,10, 15, ...
minutes (l = 1, 2, 3, . . . ) in October 2011, using the thresholds in
Table II. The results are presented for c = 12, 24 and 36.

results for l = 6, that is the generation change 30 mins after
current time, as shown in the lower plots in Figure 4. The
incremental SVD with c = 36 gives only 31.2% sensitivity on
the proportion of high |∆W | using the thresholds s > 5000
and k < 8. For low |∆W |, it gives a specificity that reaches up
to 94.1%. Although the overall accuracy (see Figure 6(a)) is
only 48.1% for the prediction after 30 minutes, we can still be
very confident on the low generation changes when the values
s and k are outside the thresholds.

We also observe from Figure 5(a) that as time increases,
there are more high generation changes clustered in the region
defined in Table II. When s and k values fall in this region,
70% of the time |∆W | > 100 MW within three hours (180
mins). Figure 5(b) shows that when s and k values fall outside
the ranges with high |∆W |, at least 90% of the time the
generation change in the next 50 minutes will be low.

Thus far, we have considered only the weather and wind
generation data from the month of October 2011. We next
consider how the decision thresholds derived in Table II
will perform when used in prediction of |∆W | on test data
from November 2011. Figure 6(a) and (b) show the overall
accuracy for the October 2011 training data and the November
2011 testing data, respectively. The overall accuracy of the
incremental SVD with c = 12 and 36 on predicting |∆W |
reaches above 70% within an hour in November.
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Fig. 6. Overall accuracy in training (a) and testing (b) for |∆W |
after 5,10, 15, ... minutes (l = 1, 2, 3, . . . ), using the thresholds in
Table II. The results are presented for c = 12, 24 and 36.

Figure 7 displays the sensitivity and specificity on the test
data. When c = 12 and 36, the sensitivity and specificity are
very similar to the October 2011 training data. When s and
k fall outside the ranges associated with high |∆W | in the
training data, we can say that for the test data, more than 90%
of the time, there will be no |∆W | > 100 MW within 50
minutes. Similarly, when s and k fall within the ranges, 70%



of the time we expect to see |∆W | > 100 within 2 hours.

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Minutes after

S
e
n
s
it
iv

it
y

c = 12

c = 24

c = 36

0 100 200 300 400 500
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Minutes after
S

p
e
c
if
ic

it
y

c = 12

c = 24

c = 36

(a) (b)

Fig. 7. Sensitivity and specificity in predicting |∆W | after 5,10, 15,
... minutes (l = 1, 2, 3, . . . ) in November 2011, using the thresholds
in Table II obtained from training on October 2011 data. The results
are presented for c = 12, 24 and 36.

However, for c = 24, the accuracy in testing, the sensitivity,
and the specificity are all different from the corresponding
curves for c = 12 and 36. This suggests that the thresholds
used from the October 2011 data may not be the most
appropriate for this time window. To confirm this, we plot the
distribution of s and k for the high and low generation change
for November 2011 as shown in Figure 8. This indicates a
revised decision boundary of s > 3800 and k < 7, which
results in c = 24 giving similar performance to c = 12 and 36
as shown in Figure 9.
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Fig. 8. The largest singular values, s, on the x-axis, and the numbers
of top singular values k, on the y-axis, obtained using a two-hour
window (c = 24) for November 2011. (a) and (b) show time points
for which |∆W | > 100 MW and |∆W | ≤ 100 MW, respectively.
The time interval l = 6 (= 30 mins). The colors indicate increase and
decrease in generation.
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Fig. 9. Sensitivity and specificity in predicting |∆W |after 5,10, 15,
... minutes (l = 1, 2, 3, . . . ) in November 2011, using the updated
thresholds, s > 3800 and k < 7 for c = 24. The results are presented
for c = 12, 24 and 36.

This suggests that we need to select the thresholds for

the decision boundaries more carefully. In future work, we
will explore clustering and classification methods, as well as
an improved set of variables (in addition to just s and k) to
identify more robust decision boundaries.

VI. RELATED WORK

Many ideas have been explored to improve the predictive
power of wind generation forecasts [7] and to use data mining
techniques to support the scheduling of wind generation [8],
[1], [2]. To the best of our knowledge, there has not been any
work in exploiting a representation derived from a singular
value decomposition of the weather data in the time period just
before the current time to predict the wind generation in the
near future. In our analysis, we have used one approach [5]
to calculate the singular value decomposition incrementally.
Other approaches [9], [10], [11] are also possible, though we
expect that they would give similar results.

VII. CONCLUSIONS

In this paper, we show how we can use the SVD of weather
data in a time window just before the current time to predict
the change in wind generation in the time interval just after
the current time. Our approach is very effective in predicting
small changes in generation and computationally efficient as
it uses an incremental algorithm to analyze the weather data
streams as they arrive.
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